v2rayng官网vps-香蕉加速器官网正版

Nearly every tissue in the body needs a blood supply, and that demand is met by a network of interconnected blood vessels called the microcirculation. The microcirculation is a highly adaptable system of small blood vessels that are a tenth of the diameter of a human hair–-you need a microscope to see them–-and there are over a million microvessels in a single gram of tissue. Microvascular growth and remodeling are important processes in nearly every major disease, including diabetes, heart disease, peripheral vascular disease, stroke, neurodegenerative diseases, and cancer. In our lab, we develop and use experimental and computational techniques to study and design new approaches for growing and regenerating injured and diseased tissues by manipulating the structure and composition of the microvasculature.

v2rayng官网vps-香蕉加速器官网正版

v2rayng官网vps-香蕉加速器官网正版

Amongst Medical and Biological Engineering Elite
02.23.2016
DETAILS
New $2.5M Collaborative NIH Grant Awarded
02.23.2017 
DETAILS
Pioneering Agent-Based Modeling
04.19.2016
DETAILS

v2rayng官网vps-香蕉加速器官网正版

With the recent acquisition of two state-of-the-art 3D-bioprinters, we have begun to explore how 3D-printing technology can be used to produce engineered tissues for use as model systems for studying disease and for generating implantable tissue constructs. Our current 3D-bioprinting projects involve collaborations with biomaterials experts at UVA in Chemical Engineering and make use of cutting-edge polymers for oxygen sensing developed by the Fraser Lab in the Dept. of Chemistry. Current work is focused on printing mini-pancreas tissue chips and skeletal muscle. These studies have been fueled by funds from the Jefferson Trust and have seeded a brand new "Center for Advanced Biomanufacturing" at UVA, with BME collaborator, Dr. George Christ. 

We use a parallel approach that combines experimental models with agent-based computational models to guide the development of new methods in tissue engineering and regenerative medicine. We are particularly interested in the microcirculatory system and how microvascular networks structurally adapt, through active growth and remodeling in health and disease. Our research is relevant to a variety of medical problems including heart disease, peripheral limb ischemia, wound healing, cancer and diabetes.

Learn More
Learn More

国内ipad怎么看youtube

Department of Biomedical Engineering

University of Virginia

v2rayng官网vps-香蕉加速器官网正版

  • mac怎么上youtube
  • 国内ios如何使用youtube
  • Grey Google+ Icon
  • 苹果怎么看youtube
  • 苹果用什么翻墙上youtube
飞龙加速器下载地址,飞龙加速器2024年,飞龙加速器vp,飞龙加速器vqn  王泡芙猫咪,王泡芙猫咪小视频全部,王泡芙小猫咪,王泡芙泰国个人资料  外游加速器mac下载,外游加速器vqn,外游加速器永久免费加速,外游加速器vn  怎么翻外墙网安卓下载,怎么翻外墙网用不了了,怎么翻外墙网跑路了,怎么翻外墙网打不开  飞鸟加速器官网,飞鸟加速器ios下载,飞鸟加速器vqn,飞鸟加速器vnp  p30u加速器安卓下载,p30u加速器vqn,p30u加速器免费永久加速,p30u加速器免费试用  海外版tiktok官网入口永久免费加速,海外版tiktok官网入口2024,海外版tiktok官网入口vp,海外版tiktok官网入口vn  cn2加速器官网,cn2加速器vnp,cn2加速器永久免费加速,cn2加速器vqn